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The interplay between electrostatic interactions and orientational correlations is studied for a model system
of charged rods positioned on a chain, using Monte Carlo simulation techniques. It is shown that the coupling
brings about the notion of electrostatic frustration, which in turn results in: �i� a rich variety of orientational
orderings such as chiral phases, and �ii� an inherently slow dynamics characterized by stretched-exponential
behavior in the relaxation functions of the system.
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I. INTRODUCTION

Solutions of highly charged polymers are known to de-
velop novel structural properties due to the interplay between
electrostatic interactions and entropic effects �1�. For ex-
ample, it has been shown that for most charged biopolymers
such as DNA, filamentous �F-�actin, and various viruses �2�,
electrostatic correlations in the vicinity of the macroions
caused by multivalent counterions—ions of opposite
charge—can lead to like-charged attraction �3�. This attrac-
tion most often destabilizes the polyelectrolyte solution and
leads to the formation of collapsed bundles.

In a recent experiment with F-actin, Wong et al. observed
that when the density of multivalent counterions is not yet
sufficient to trigger complete collapse, the uniform solution
can become unstable and phase separate into coexisting low-
and high-density phases �4�. This experiment is perhaps a
most direct manifestation of the peculiar behavior of poly-
electrolytes in high-density solutions: the dense phase is
characterized by multiaxial liquid crystalline behavior �5�, as
well as by exceedingly slow dynamics that leads to the for-
mation of an actin gel �4�. Note that the role of multivalent
counterions in this case is to bring the polymers close to each
other by forming bridges, and thus to maintain a high-density
solution of repelling rods. A similar self-assembly pattern has
been observed in the structure of the nuclear lamina: a
charged filamentous integral membrane protein network that
provides a cytoskeletal support for the nuclear membrane
�6�.

Another interesting example is the observation of slow
modes in the dynamics of various high-density polyelectro-
lyte solutions in the absence of salt, where it is suggested
that correlations cause the formation of starlike complexes
with considerably slow dynamics �7,8�. These examples raise
the issue that strong many-body Coulombic correlations for
extended �nonpointlike� charged objects could lead to novel
features that are poorly understood.

Based on such experimental evidence, one can broadly
identify two characteristic features in this class of problems:
the novel orientational ordering and the slow dynamics.
Since the system in question is highly interacting and com-
plicated, as exemplified by the observations mentioned
above, we focus here only on the orientational ordering of
rodlike polyelectrolytes, and whether the orientational de-
grees of freedom could bring about slow dynamics. As a first

step towards understanding such properties, one should note
the frustration that is inherent structurally in the collection of
like-charged rodlike objects: As they come together, they re-
orient themselves to minimize the total energy of the system.
Here, the long-range nature of the interaction presents them
with a multitude of configurations that are good minimum
energy candidates and yet are far apart in the configuration
space. This picture is partly supported by the fact that in the
presence of �a considerable amount of� salt the above effects
are washed out, as screening can eliminate the frustration by
reducing the effective range of the mutual repulsion.

We set out to study the collective behavior of polyelectro-
lytes at close separations using Monte Carlo simulation
�MCS�, with the primary goal of understanding the complex-
ity that electrostatic frustration can bring about. We consider
a most simple model system of similarly charged rigid rods
of equal length L with their centers forming a regular lattice
of spacing a on a chain, as shown in Fig. 1. We find a variety
of collective behaviors, and map out the phase diagram for
the system as a function of temperature and lattice spacing
�inverse density of the rods�, as shown in Fig. 2. In the low-
density regime, the rods are found to order in a staggered
way upon decreasing the temperature, such that they are per-
pendicular both to their neighbors and to the axis that con-
nects their centers, through a two-stage crossover transition.

For intermediate densities, we find that a low-temperature
ordered phase appears through a first-order phase transition,

FIG. 1. The schematic configuration of charged rods. The cen-
ters of the rods of equal length L are fixed on a chain of spacing a.
Each rod has two rotational degrees of freedom, and a uniform
distribution of point charges.
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in which neighboring rods have a twist angle in addition to
the 90 deg of the low-density phase. In the high-density re-
gime, a hierarchy of different phases is observed depending
on the lattice spacing, where there is a multitude of twist
angles, a periodic structure with a basis, and out-of-plane
arrangements of the rods. We also study the equilibrium re-
laxation properties of the system and find that the appropriate
order parameter in the system has an anomalous relaxation
characterized by a stretched-exponential behavior, which is a
feature also seen in systems with frustration.

The rest of the paper is organized as follows. In Sec. II,
we introduce the model and outline the simulation technique
used. Section III is devoted to the description of various parts
of the phase diagram, which is followed by discussions on
the relaxation dynamics of the system in Sec. IV. Some dis-
cussions and concluding remarks are presented in Sec. V.
Finally, a variant of the model that corresponds to polyelec-
trolyte combs is discussed in the Appendix.

II. THE MODEL

We use the Metropolis algorithm to simulate a system of
Nr rods with their centers fixed on a chain, and only their
rotational degrees of freedom �� ,�� left to explore �9�. We
assume that Nq �odd� point-charges of the same sign are dis-

tributed symmetrically on each rod �Fig. 1�. The screened
Coulomb interaction energy of the system of rods can be
written as

U =
q2

�
�

m�n

Nr

�
i,j=1

Nq e−��rmi−rnj�

�rmi − rnj�
, �1�

where � is the dielectric constant of the medium, q=Q /Nq,
where Q is the overall charge of the rod, rmi�rnj� is the po-
sition of charge i�j� on rod m�n�, and �−1 is the Debye
screening length. Note that the energy expression is invariant
under the local transformation �→�−� and �→�+� for
each rod. We use free boundary conditions to avoid com-
plexities arising from the Ewald-summation of extended
charge distributions �10�.

For each value of the lattice constant a, we start the sys-
tem from a random configuration of the rods at a high tem-
perature �where the system is in the disordered phase� and
gradually cool down toward lower temperatures. At a given
temperature, we start the calculation of various thermal av-
erages after equilibration and take the last configuration at
each temperature as the initial configuration for a slightly
lower temperature. We have run a wide variety of simula-
tions for different values of Nr, Nq, and a, and found that all
the qualitative results are robust.

III. THE PHASE DIAGRAM

To capture the essence of the electrostatic frustration, we
first consider the salt-free case that corresponds to �=0, and
comment on the effect of screening later. In Fig. 2, we show
the phase diagram of the system in the plane of temperature
and lattice constant for Nr=100 and Nq=3.

In the low-density regime, where a is greater than a criti-
cal value ac=0.40L, the rods appear to order on decreasing
the temperature through a two-stage crossover transition. The
first crossover �denoted by the dashed line in Fig. 2� takes
the system to a partially ordered phase in which the angular
degree of freedom, �, freezes to � /2, and the rods fluctuate
freely only within the resulting parallel plates �region �a� in
Fig. 2�. The ordering in the � degree of freedom occurs
through another crossover at a lower temperature �denoted
by the dash-dotted line in Fig. 2�. The crossover transition
temperatures are determined from the specific heat of the
system as a function of temperature, which develops two
rounded peaks. In Fig. 3, the specific heat of the system is
plotted as a function of the temperature T, which is made
dimensionless by the combination q2 / ��kBL�, at a=L for
three different sizes Nr=50,100,200, and Nq=3. Each data
point is the average over five independent runs starting from
different initial random configurations. For each temperature,
1.5�106 MCS are used with the first 7.5�105 MCS being
for equilibration. As can be seen from Fig. 3, the height of
the peaks in the specific heat do not change appreciably for
various values of the system size Nr=50,100,200.

The ground-state configuration corresponding to this re-
gime is given as �see Fig. 2�b��

FIG. 2. Phase diagram of the system in the a-T plane, for �
=0. Dashed line: The crossover transition line from a disordered
regime to partially ordered one �region �a��. Dash-dotted line: The
crossover transition line from a partially ordered regime to the stag-
gered ground state of the low-density regime �region �b��. Solid
line: First-order transition line from a partially ordered regime to
the chiral ordered phase of the intermediate-density case �region
�c��. Hashed region: The domain in which a multitude of transitions
occur to phases with various kinds of orderings. Region �d�: The
“sea urchin” phase. Schematic configuration of rods corresponding
to the different parts of the phase diagram is indicated in the lower
panel. The values of the various transition points indicated in the
phase diagram are ac=0.40L, a1=0.10L, and a*�0.02L.
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�m =
�

2
and �m = m �

�

2
, �2�

where m indicates the position of the centers of rods on the z
axis �zm=ma�. This is in agreement with the two-body mini-
mum energy configuration of the rods �11�. A multipole ex-
pansion of the electrostatic energy expression in Eq. �1�,
which is presumably a good approximation in the limit of
a�L, reveals that the system of rods effectively behaves as a
collection of quadrupoles in an external staggered electric
field; hence the perpendicular ordering described by Eq. �2�.
This picture also agrees well with the lack of genuine phase
transitions in this regime, as it is expected from quadrupoles
in a symmetry breaking external field.

In the intermediate-density regime, corresponding to a*

	a	ac where a*�0.025L, lowering the temperature for
each value of the lattice constant causes a crossover transi-
tion from disordered to partially ordered regime, which is
followed by a phase transition �solid line in the phase dia-
gram in Fig. 2� to low-temperature phases having chiral or-
der. A plot for the specific heat in this regime, corresponding
to a=0.35L, is shown in Fig. 3 for system sizes Nr
=50,100,200, and Nq=3. The data points are the averages of
five independent runs starting from different initial random
configurations. For each temperature 2�106 MCS are used,
with 106 MCS being for equilibration. It can again be seen
that the specific heat is not sensitive to the size of the system.

To understand the nature of the phase transition, we ex-
amined the energy of the system upon successive cooling
and heating. In Fig. 4, the thermal average of energy per site
as a function of the temperature �that is made dimensionless
using q2 / ��kBL�� is plotted for a=0.35L corresponding to
successive cooling and heating of the system. In this curve,
7.5�105 MCS are used for equilibration and 7.5�105 MCS
for ensemble averages, and it corresponds to Nr=100, Nq
=3. As can be seen from Fig. 4, the average energy of the
system shows hysteresis around the transition temperature,
which is a signature of a first-order phase transition. One can
also define an order parameter that could distinguish between
the two phases and thus monitor the phase transition as a

function of temperature. A suitable choice for the order pa-
rameter could be

M =
1

Nr − 1 �
n=1

Nr−1

�sin 
n	 , �3�

where 
n�t�=�n+1�t�−�n�t�−� /2. Figure 5 shows a plot of
this order parameter versus temperature �in units of
q2 / ��kBL�� for a system of Nr=200 and Nq=3 at a=0.35L. In
this plot, 106 MCS are used for equilibration of the system
and 106 MCS for thermal averages. It can be seen that the
order parameter develops a discontinuous jump across the
transition temperature. This is another indication that the
transition across the solid line in the phase diagram of Fig. 2
is first order. These observations, however, should be
complemented with more systematic investigations using en-
ergy histogram methods �12,13�.

Below this transition, the system of rods appears to de-
velop a rich variety of orderings. For a1	a	ac where a1
=0.1L �region �c� in the phase diagram in Fig. 2�, the array of
rods orders in a chiral phase with the corresponding ground-
state configuration given as:

FIG. 3. The specific heat as a function of temperature T �in units
of q2 / ��kBL�� for a=L and a=0.35L, with three different sizes Nr

=50, 100, 200, and Nq=3 ��=0�.

FIG. 4. The thermal average of energy per site �in units of
q2 / ��L�� as a function of the temperature �in units of q2 / ��kBL��
upon successive cooling and heating of the system, for a=0.35L,
Nr=100, Nq=3, and �=0. The self-energy of the staggered ground-
state configuration E+ is subtracted off from the energy. The hyster-
esis loop can be observed, which indicates a first-order transition
from the partially ordered regime to the chiral phase.

FIG. 5. The order parameter M �defined in Eq. �3�� versus tem-
perature �in units of q2 / ��kBL�� for a system of Nr=200, Nq=3 at
a=0.35L, and �=0.
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�m =
�

2
and �m = m
�

2
+ 
g�a�� . �4�

Since the twist angle 
 is small in the vicinity of the transi-
tion line, we can simplify our description by assuming that 

itself serves as the corresponding order parameter for the
phase transition from �a� and �b� to �c�. While its value is
observed to undergo a finite jump just below the transition
line, the ground-state value 
g�a� is found to vanish continu-
ously at ac, implying that the termination point of the transi-
tion line at zero temperature, corresponding to a=ac is a
critical point.

For a more direct study of the transition in the ground-
state configuration at ac, we calculate the exact energy per
site for the system using the energy expression given in Eq.
�1� as a function of 
 for the configuration given in Eq. �4�.
This means that we freeze the charged rods into the configu-
rations defined by Eq. �4� and calculated in a point-by-point
double summation the electrostatic energy of the configura-
tion for each value of 
. This energy function, which is
plotted in Fig. 6 for different values of a, admits a Landau
form and the corresponding minimum energy solution 
g�a�
vanishes at ac as 
g= �ac−a�� with �=0.500 �see inset of Fig.
6�. We have checked that the value of � does not depend on
Nq �even up to Nq=1001�, confirming the expectation from
Landau theory that �=1/2.

In the intermediate-density regime when the rods are
brought closer to each other, different configurations that are
close in energy appear. This changes the behavior of the
system at a1 where the curve of energy versus 
 starts to
have four degenerate minima. For a*	a	a1 with a*

�0.025L �hashed region in Fig. 2�, while the rods still re-
spect the planar ordering, a multitude of transitions occur
taking the system through a variety of minimum energy con-
figurations. For example, upon increasing the density, a
phase appears in which successive crosslike structures
formed by two neighboring rods are rotated relative to each
other around the z axis by an angle 
�, which corresponds to
a chiral ordering with a basis. Finally, in the high-density
region, where a	a*, the rods are no longer confined in the

planes. While in this regime one also finds various kinds of
orderings, eventually the rods tend to approach a spherical
configuration that resembles a “sea urchin” �see Fig. 2�d��, as
a approaches its smallest possible value a0 that is set by the
thickness of the rods. Note that only a very small choice of
the cutoff length, such as our choice of a0=10−6L, can allow
for these complicated high-density phases to exist. Moreover,
unlike the lower density cases, this part of the phase diagram
depends very sensitively on the choice of charge distribution
on the rods, namely, the value of Nq, as well as whether the
charges are smeared or discrete.

IV. RELAXATION DYNAMICS

The low-temperature chiral ordering �in either of its vari-
ous forms� is not easily achieved in its complete form when
the system is cooled down from the disordered phase to tem-
peratures below the transition line. This means that the equi-
librium dynamics of the system involves a rather slow pro-
cess, which we try to identify and study here.

For a1	a	ac, the array of rods is decomposed into sev-
eral domains of the chiral structure with both positive and
negative values of 
, corresponding to the degenerate
minima of energy shown in Fig. 6. The neighboring left-
handed and right-handed domains are regions that typically
contain just a few rods, and are linked via what can be
thought of as kinks. By definition, the kinks annihilate when
they meet each other or when they reach the boundaries of
the system. We observe that the density of the kinks is more
or less fixed to about one kink for every 40 rods or so,
irrespective of the size of the system.

These kinks are observed to have very slow dynamics,
presumably due to the electrostatic frustration, so that a con-
siderably long MC time is needed before all the kinks are
annihilated and one of the domains spans the entire system.
The MC time needed for the annihilation of the kinks in-
creases with increasing the system size. We also note that
when the energy has four minima �for a just below a1� and
two kinds of chiral structures are possible, different kinds of
kinks are observed depending on the type of the two neigh-
boring domains that are linked.

To put the study of the slow dynamics in a more quanti-
tative framework, we probe the equilibrium relaxation prop-
erties of the system by measuring the autocorrelation func-
tion for 
n�t�, which is defined as

C�t� =
�n=1

Nr−1 � dt�
n�t + t��
n�t��

�n=1

Nr−1 � dt�
n�t��
n�t��
. �5�

To obtain C�t� at each temperature T, we start the system
from a random configuration at high temperatures and
quench it to T. After running the system for a waiting time
tw, we use the system configuration �n�t� in all time steps
from tw to tw+ tav to calculate C�t� using Eq. �5�. For long
enough waiting times �tw�2�106 MC steps for Nr=100�,
the relaxation function C�t� is independent of tw as well as
the system initial conditions, indicating that there is no dif-
ference between averaging over time �Eq. �5�� and averaging

FIG. 6. A plot of the ground-state energy per site as a function
of 
 for a=0.3L, a=ac=0.4L, and a=0.6L, with Nr=40, Nq=3, and
�=0. The value of 
 which minimizes the energy of the system
vanishes continuously at a=ac. Inset: The log-log plot of 
g versus
�ac−a� gives a slope of �=0.500.
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over different initial conditions of the system. Note that the
waiting time is typically the time needed for the kinks to
annihilate.

In Fig. 7, we show the system relaxation function with
logarithmic time scale for different values of temperature in
the case of a=0.25L with Nr=100 and Nq=3. Using nonlin-
ear fits with three free parameters, we find that the long-time
part of the relaxation function is well represented by the
stretched-exponential form, C0 exp�−�t /���. The exponent 
saturates to a constant of the order of 0.9 in the high-
temperature regime, while it drops at lower temperatures
where the relaxation is exceedingly slower. The stretched-
exponential form for the relaxation is a feature that is often
encountered in the dynamics of frustrated systems �14�.

V. DISCUSSION AND CONCLUSION

In a most simple realization of the system, we have shown
that charged linear objects in close separation can develop
novel collective orientational correlations as well as an un-
usually slow dynamics, due to the frustration in the orienta-
tional degrees of freedom. While in our simple model system
we assume that the rods are positioned in a lattice, we expect
that removing this constraint will cause the orientational cor-
relations to manifest themselves as liquid crystalline struc-
tures such as those observed in Ref. �4�. Geometrical frustra-
tion induced by the dimensionality of the arrangement could
also affect the orientational ordering, and it remains to be
seen what kind of arrangement is favored by the liquid sys-
tem itself; i.e., what is the coupling between the positional
and the orientational correlations in this frustrated system.

Let us examine the effect of screening by added salt in the
above results. For a low concentration of added salt, the
screening is weak and we expect that the results reported
here will hold true as long as the screening length is the
largest length in the system. As the salt concentration is in-
creased, however, the Debye length begins to compete with
the other length scales and this could change the phase be-
havior of the system.

We have performed simulations with the screened Cou-
lomb interaction of Eq. �1� using different values for the

Debye screening length. We find that the general structure of
the phase diagram of Fig. 2 persists, while the size of the
chiral domain in the phase diagram shrinks as � is increased.
In Fig. 8, the first-order phase transition line is shown for
three values of the Debye length for Nr=100 and Nq=3. It
can be seen that even for �−1=L the value of ac barely
changes as compared to its �=0 value of 0.4L. Our results
suggest that �−1ac sets the threshold where screening can
wipe out the chiral ordering altogether.

We have neglected the effect of counterions in the above
study. This can be justified by noting that the polyelectrolytes
are very short rods and unless we choose extremely high
values for q, it is unlikely that they condense on the rods.

FIG. 7. Equilibrium relaxation function of the system for a
=0.25L, �=0, and various temperatures, reported in units of
q2 / ��kBL�. The nonlinear fits to the long-time behavior of the
curves are of the stretched-exponential form. Inset: A plot of  as a
function of temperature.

FIG. 8. First-order transition line of the phase diagram for dif-
ferent values of the screening parameter.

FIG. 9. Phase diagram of the polyelectrolyte comb model in the
a-T plane, for �=0. Dashed line: The crossover transition line from
a disordered regime to partially ordered one �region �a��. Dash-
dotted line: The crossover transition line from a partially ordered
regime to the staggered ground-state of the low-density regime �re-
gion �b��. Solid line: First order transition line from a partially
ordered regime to the chiral ordered phase of the intermediate-
density case �region �c��. Hashed region: The domain in which a
multitude of transitions occur to phases with various kinds of order-
ings. Region �d�: The “sea urchin” phase. Schematic configuration
of rods corresponding to the different parts of the phase diagram is
indicated in the lower panel. The values of the various transition
points indicated in the phase diagram are ac=1.40L and a1=0.3L.
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This means that they will move relatively freely in the vicin-
ity of the linear polyelectrolyte array, and will merely par-
ticipate in the Debye screening of the interaction. This effect
can be taken into account by considering a local effective
value for the Debye length that incorporates the density of
the counterions as well as that of salt. Moreover, the pres-
ence of the counterions in an effective “cell” around the ar-
ray provides the necessary neutralization of the system. In
our treatment, however, we did not need to care about the
neutralization criterion because the centers of the charged
rods are fixed in space, and in effect it is only multipoles �not
monopoles� that are interacting.

Finally, we note that the results obtained here are related
to the studies of the equilibrium configuration of ions in a
confined plasma, where even similar chiral phases are ob-
served as the confinement potential becomes anisotropic
�15�.
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APPENDIX: END-GRAFTED CHARGED RODS

In this Appendix, we consider the case where the charged
rods are actually grafted at their ends instead of the mid-
points. This will make a model for a polyelectrolyte comb,
i.e., a backbone with a linear array of charged side chains,
which has in fact been synthesized and studied �16,17�.

We have performed simulations on such a system and
have found the same general behavior as the previous case.
The corresponding phase diagram for the case of Nq=7 is
shown in Fig. 9, where the transition points are found to be
ac=1.40L, and a1=0.3L. Note that the region �b� in Fig. 9
corresponds to rods that are antiparallel to their neighbors,
which is a direct consequence of the nonvanishing dipole
moment of rods that are grafted at one end, as opposed to
those that are grafted from the midpoint. Consequently, re-
gion �b� in this case corresponds to dipoles in a staggered
field. Similarly, in the chiral phase the neighboring rods are
out of phase by � �instead of � /2� plus a residual twist
angle. We also note that the transitions occur at larger values
of the reduced temperature and lattice spacing, because of
the stronger dipolar interactions.
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